Browsing by Author "de Rosa, Matteo"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Crystal structure of a poxvirus-like zalpha domain from cyprinid herpesvirus 3Publication . Tomé, Ana Rita; Kuś, Krzysztof; Correia, Silvia; Paulo, Lara Martins; Zacarias, Sónia; de Rosa, Matteo; Figueiredo, Delio; Parkhouse, R Michael E; Athanasiadis, AlekosZalpha domains are a subfamily of the winged helix-turn-helix domains sharing the unique ability to recognize CpG repeats in the left-handed Z-DNA conformation. In vertebrates, domains of this family are found exclusively in proteins that detect foreign nucleic acids and activate components of the antiviral interferon response. Moreover, poxviruses encode the Zalpha domain-containing protein E3L, a well-studied and potent inhibitor of interferon response. Here we describe a herpesvirus Zalpha-domain-containing protein (ORF112) from cyprinid herpesvirus 3. We demonstrate that ORF112 also binds CpG repeats in the left-handed conformation, and moreover, its structure at 1.75 Å reveals the Zalpha fold found in ADAR1, DAI, PKZ, and E3L. Unlike other Zalpha domains, however, ORF112 forms a dimer through a unique domain-swapping mechanism. Thus, ORF112 may be considered a new member of the Z-domain family having DNA binding properties similar to those of the poxvirus E3L inhibitor of interferon response.
- High-resolution structure of an atypical α-phosphoglucomutase related to eukaryotic phosphomannomutasesPublication . Nogly, Przemyslaw; Matias, Pedro M.; de Rosa, Matteo; Castro, Rute; Santos, Helena; Neves, Ana Rute; Archer, MargaridaThe first structure of a bacterial α-phosphoglucomutase with an overall fold similar to eukaryotic phosphomannomutases is reported. Unlike most α-phosphoglucomutases within the α-D-phosphohexomutase superfamily, it belongs to subclass IIb of the haloacid dehalogenase superfamily (HADSF). It catalyzes the reversible conversion of α-glucose 1-phosphate to glucose 6-phosphate. The crystal structure of α-phosphoglucomutase from Lactococcus lactis (APGM) was determined at 1.5 Å resolution and contains a sulfate and a glycerol bound at the enzyme active site that partially mimic the substrate. A dimeric form of APGM is present in the crystal and in solution, an arrangement that may be functionally relevant. The catalytic mechanism of APGM and its strict specificity towards α-glucose 1-phosphate are discussed.